

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2011
2. REPORT TYPE

Conference Paper-Post Print
3. DATES COVERED (From - To)

May 2009 – November 2010
4. TITLE AND SUBTITLE

ANALYSIS OF BINARY VOTING ALGORITHMS FOR USE IN
FAULT-TOLERANT AND SECURE COMPUTING

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Kevin Kwiat, Alan Taylor, William Zwicker, Daniel Hill, Sean Wetzonis,
Shangping Ren

5d. PROJECT NUMBER
23G4

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/Information Directorate Union College
Rome Research Site/RIGD Mathematics Department
525 Brooks Road Schenectady NY 13208
Rome NY 13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI/RRS

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2011-3

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #: 88ABW-2010-1912.
Date Cleared: April 7, 2010.

13. SUPPLEMENTARY NOTES
© 2010 IEEE. This article appeared in the Proceedings of the 2010 IEEE International Conference on Computer Engineering and Systems (ICCES). This work is
copyrighted. One or more of the authors is a U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is joint
owner of the work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
This paper examines three binary voting algorithms used with computer replication for fault tolerance and separately observes the
resultant reliability and security. The paper aims to offer insights to answer the question: Can a voting algorithm provide a system
with both security and reliability? The papers show that while random dictator (i.e., randomly choosing one of the replicas) provides
good security and majority rule yields good fault tolerance, neither is effective in both. The random troika (a subset of 3 replicas) as
an effective combination of fault-tolerant and secure computing.

15. SUBJECT TERMS
Fault Tolerance, Reliability, Game Theory, Voting

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

6

19a. NAME OF RESPONSIBLE PERSON
Kevin A. Kwiat

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Analysis of Binary Voting Algorithms for use in
Fault-Tolerant and Secure Computing

Kevin Kwiat∗, Alan Taylor†, William Zwicker†, Daniel Hill‡, Sean Wetzonis§, Shangping Ren¶
∗Cyber Science Branch

Air Force Research Laboratory, Rome, New York
†Mathematics Department, Union College, Schenectady, New York
‡Mathematics Department, Bethel College, South Bend, Indiana

§Dept of Electrical and Computer Engineering, University of Massachusetts at Lowell, Lowell, Massachusetts
¶Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois

Abstract—We examine three binary voting algorithms used
with computer replication for fault tolerance and separately
observe the resultant reliability and security. We offer insights to
answer the question: Can a voting algorithm provide a system
with both security and reliability? We show that while random
dictator (i.e., randomly choosing one of the replicas) provides
good security and majority rule yields good fault tolerance
neither is effective in both. We present the random troika (a
subset of 3 replicas) as an effective combination of fault-tolerant
and secure computing.

I. INTRODUCTION

Computers are often replicated to mask out failures, with

some form of voting employed to reach agreement on the data

fielded by the various replicas [2]. Given a set of data each

computer must independently come to its own conclusion,

compare its conclusion to the other computers conclusions,

and communicate the decisions of the entire set so that the

decision representing the set is posted as the result.

In this paper, we work with only symmetric binary voting

systems. A binary voting system is a system that produces

either an incorrect solution or a correct solution. Typically, in

useful binary voting systems, there is a given probability p
greater than 0.5 that any individual decision is correct.

A coin flipping game with p = 0.5 models an unsure binary

voting system because the outcome has no propensity towards

either result.

In critical systems, voting algorithms are used because

the correctness of a solution cannot be trusted to a single

computer.

A replicated computer will always choose the outcome it

determines is the most correct, but this choice may be based

on data that is incomplete or vulnerable.

Therefore, it is a possibility that this computer may still

vote incorrectly even if it is fault-free. For this reason, we use

a value p as the probability of a correct response by a non-

failed machine, i.e., the reliability of a machine. In addition

to a computer choosing incorrectly due to insufficient data, a

computer may also vote incorrectly due to some kind of fault.

∗Approved for Public Release; Distribution Unlimited: 88ABW-2010-1912
dated 07 Apr 2010

A reliable system is fault-tolerant or, in other words, is

capable of sustaining correct operation in the presence of

naturally-occurring faults (NOFs). We restrict the definition of

security to attack tolerance: the capability of continuing correct

operation after a non-random, directed fault occurs (the system

is attacked). We will call these directed faults compromises.

Both NOFs and compromises are examples of failures. A

computer experiencing either a NOF or a compromise will

be called a failed machine.

Our motivation for combining security and fault tolerance

comes from [3]. The aim of this paper is to investigate

the simultaneous treatment of compromises and NOFs and

evaluate the effectiveness of different voting algorithms on

the survivability of a system when both types of failures may

occur.

II. BINARY VOTING

Many voting algorithms require a central tallyer (often times

called the voter) that collects the individual results from the

replicated computers and produces the decision. However,

distributed voting algorithms exist that do not require a central

tallyer, such as in [1], but treats each replica as an individual

voter that is capable of casting the final decision. Therefore,

in our paper, we treat the replicated computers as having the

capability to perform distributed voting that does not require

a central tallyer.

The type of voting we are concerned with is binary voting.

A simple binary voting system can be modeled by stating the

required number of votes to cause a positive outcome. For

example, the notation [N ;V1, V2, V3, . . .] defines a voting

pool where N is the number of votes required to create a

positive outcome, and V (1, 2, 3, . . .) is the weight of the voter

in that spot. The system [3; 1, 1, 1, 1, 1] indicates there are five

978-1-4244-7042-6/10/$26.00 ©2010 IEEE 269

1

voters each with a weight of one. If any three of them agree,

then the decision is made.

The example system above is anonymous because each voter

has the same expected contribution as any other voter. The

following systems assume anonymity:

Majority Rule (MR): [3; 1, 1, 1, 1, 1]

Majority rule requires one more vote than half the number

of voters in order to make a decision. All voters must have

the same weight.

MR exhibits high reliability, but low security. If the number

of failed computers (a computer that has experienced either

a NOF or compromise) is exactly zero, or is low compared

to the total number of computers, MR will choose correctly

with a high degree of certainty. The certainty increases as the

number of computers increases. According to the Condorcet

Jury Theorem [4], as the number of voting computers ap-

proaches infinity, the odds that majority rule chooses correctly

approaches 1.

Random Dictator (RD): [1; 0, 0, 0, 0, . . . 1]

The RD method randomly selects one computer to make

the decision for the group. The number of voting computers

is always one.

RD exhibits a high degree of security but relatively low

reliability. If the number of failed computers approaches or is

equal to zero and the system is small, then RD performs sim-

ilarly to MR. As the number of voting machines approaches

infinity the probability that random dictator chooses correctly

approaches p.

Random Troika (RT): [2; 1, 1, 1, 0, 0]

Random troika, named from the Russian word for a trio of

horses, randomly selects three machines to vote by majority.

The majority of the troika is then committed as the decision of

the system. Figure 1 shows two clusters of 9 computers each

where one cluster operates under RD and the other operates

under RT.

Random troika essentially reduces the size of the voting

pool with the goal of increasing the average value p within

the smaller pool.

In any system it is hoped that the value of p will be high

and that computers will be without failures; however, this is

not always the case. The following examples calculate the

reliability of a cluster of five computers employing each of

the above presented voting algorithms given 0, 1, and 2 NOFs.

Each example shows the outcome given all values of p between

[0,1].

A. MR vs. RD vs. RT assuming 0 failures

The reliability function calculates the probability that a

cluster decides correctly. For MR, in the ideal case of zero

failures, the reliability function is calculated by taking the

probability that three computers vote correctly (p3) multiplied

by the number of combinations of the three computers
(
5
3

)

Fig. 1. Random Dictator (RD) vs. Random Troika (RT)

and multiplied by the probability of two incorrectly voting

computers [(1− p)2]:

10p5 − 20p4 + 10p3 (1)

Then we must add the probability that any four computers

vote correctly (p4), multiplied by the combinations of four

computers
(
5
4

)
, multiplied by the probability of one fault-free

computer voting incorrectly (1− p):

5p5 − 15p4 + 10p3 (2)

Lastly the probability that all five vote correctly (p5) must

be added to (2), which simplifies to:

6p5 − 15p4 + 10p3 (3)

Therefore, equation 3 is the reliability function of a system

with a MR algorithm.

The reliability function for RD, however, is the probability

that any one computer selects correctly, or simply:

p (4)

The reliability function for RT is:

−2p3 + 3p2 (5)

For a system without failures, MR will decide correctly

more often than RD for values of p > 0.5. This indicates

that MR is superior in cases of five or more voters for values

of p > 0.5. The probability of deciding correctly in a RT

system falls between that of MR and RD for all p.

Thus the reliability functions for systems with no failures

are:

• MR: 6p5 − 15p4 + 10p3

• RD: p
• RT: −2p3 + 3p2

The graph in Figure 2 shows how their reliabilities compare

over all values of p.

B. MR vs. RD vs. RT assuming 1 NOF

For cases where one computer is known to have a failure,

the MR reliability function is calculated in the same method

as in the last example and results in:

−3p4 + 4p3 (6)

270

2

Fig. 2. MR vs. RD vs. RT in zero failures case (x-axis: values of p, y-axis:
reliability)

RD has a reliability function of:

4p

5
(7)

which is calculated by taking the probability that a non-

failed computer is chosen (45) multiplied by the probability

that it votes correctly (p).
RT reliability function is:

−4p3

5
+

9p2

5
(8)

RT, while sub-optimal for all values of p, is greater than

MR for values less than approximately 0.6 and greater than

RD for values greater than 0.6. Integrated over p = (0, 1]
shows the average reliability. It is surprising to note that RT

has the greatest average value which makes it useful for cases

where p is either random or unknown. The graph for one NOF

is very similar to that of zero failures.

Figure3 shows a comparison of the reliability functions of

the voting algorithms.

1) If 0.5 < p < 0.600, then RD < RT < MR

2) If 0.600 < p < 0.6051, then RD > MR > RT

3) If 0.6051 < p < 0.6096, then MR > RD > RT

4) If 0.6096 < p < 1, then MR > RT > RD

(Note: The values 0.600, 0.6051, and 0.6096 are accurate

to four decimal places and are the intersections of the three

equations.)

If the precise value of p is known, then RT is never optimal;

it would then seem logical to dismiss RT. However, if the value

of p is unknown, then the natural approach is to choose the

algorithm whose reliability function has the greatest average

value on the interval [0, 1]. This is calculated by taking the

integral of the functions over the interval [0, 1]. RT then

becomes the logical choice; however, in more realistic cases

where p > 0.5, MR is the most logical choice. Nevertheless,

we will see that RT does bare an unexpected significance.

C. RD vs. MR vs. RT assuming two failures

Recall that as the number of failed computers increased the

probability of a correct decision in an MR system decreased.

Fig. 3. MR vs. RD vs. RT from p = [0.595, 0.613] in one failure case
(x-axis: values of p, y-axis: reliability)

MR was optimal for values of p > 0.61 with zero compro-

mises and for p > 0.77 with one compromise. The reliability

functions of the three methods assuming two failures are:

• MR: p3

• RD: 3p
5

• RT: −p3

5 + 9p2

10

Performing a similar analysis as in the previous cases we

obtain the following:

1) If 0 < p < 0.75, then RD > RT > MR

2) If 0.75 < p < 0.6547, then RD > MR > RT

3) If 0.6547 < p < 0.8139, then MR > RD > RT

4) If 0.8139 < p < 1, then MR > RT > RD

The same conclusion can be made as in the one failure case:

RT is not an optimal strategy. We will see, however, that to

abandon RT after only examining its effect on reliability would

be premature.

III. STRAGIC CONCLUSION

The above examples evaluate the reliability provided by

three distinct voting algorithms when a system experiences

0, 1, and 2 NOFs; however, these examples fail to consider

the security of the algorithms.

We begin by examining a smaller scenario of two clusters of

three computers each and an attacker versus a defender. Since

participants in a competition are adversaries, their strategies

are opposed to one another; a positive outcome for one is

the exact opposite for the other. We assume that players

in competition will rationally take courses of action that

maximize the likelihood of their desired outcome.

A failed cluster is one that will produce an incorrect output

after voting, and such a cluster constitutes a loss for the

defender and a win for the attacker, making the game zero-

sum. In this scenario p is assumed to be one. The defender will

choose either RD for both clusters or MR for both clusters.

The attacker may compromise any two computers, resulting

in the event matrix of Figure 4.

Figure 4 displays all possible outcomes of an attack on

two clusters with two scenarios of attack strategies and two

271

3

possible algorithms for defense. The 2, 0 column represents the

scenario of two compromises in the first cluster and zero in

the second, and the 1, 1 column represents the scenario of one

compromise in each cluster. The values in the graph represent

the expected number of clusters to survive given the defense

choice and the attack strategy.

Fig. 4. Attacker vs. Defender Event Matrix

If the attacker is rational, he recognizes that attack 2, 0 is

the dominant strategy because attack 1, 1 is at least as good

as the alternative strategy for both defense choices. If both the

attacker and defender make such a matrix they are both able

to determine their best strategy. The attacker will not choose

1, 1 because the defender will then choose MR and the attacker

will not be able to compromise any clusters. The defender will

choose RD since 43 is greater than 1. The defender recognizes

that his losses are minimized when RD is selected.
We now expand the scenario to a defender who must protect

nine clusters of nine computers each (9× 9 = 81 computers)

and the attacker may compromise 25 computers. As with the

previous scenario, a failed cluster is one that will produce an

incorrect output after voting, and such a cluster constitutes

a loss for the defender and a win for the attacker. p is still

assumed to be one.
If the attacker spreads his 25 attacks roughly equally among

the clusters, then each cluster loses 2 or 3 computers out of

9. This is less than a majority, so MR will make a correct

decision in all 9 clusters. If the attacker chooses 5 clusters

and compromises 5 computers from each cluster, then MR will

decide incorrectly in 5 out of the 9 clusters (i.e., a majority of

clusters). A rational attacker will choose the latter method of

compromising a bare majority of computers in as many cluster

as possible given that the defender chooses MR. The attacker

in the above example is exploiting a weakness of MR referred

to as the “multiplier effect”.
In the previous scenario of 9 clusters we witnessed the

multiplier effect and how the security of MR decreases. What

happens if the defender employs RD? When the defender

chooses RD then on average 259 of the 9 clusters will

vote incorrectly, leaving 569 voting correctly. So the average

performance of RD is much better than that of MR. The

question arises, if the defender uses RD, will the attacker

change his attack strategy again? It turns out that no attack

strategy is more effective against RD than any other, so RD

holds the proportion of failed clusters down to the proportion

of failed computers, denying the enemy the advantage he has

when the defender uses MR. Thus the best strategy for the

attacker is to compromise 5 computers in 5 clusters and the

defender should always choose RD to deny the attacker the

multiplier effect.

We saw earlier that MR improves fault-tolerance. Is it

possible that our assumption that p = 1 skews our results in

favor of RD over MR? The Condorcet Jury Theorem suggests

that the effectiveness of RD will be degraded by a greater

amount than MR as p decreases because the fault tolerance of

MR is better than that of RD. Thus, RD is better at security

while MR is better at reliability.

We now reintroduce RT and look at its effect on the

security of these 9 clusters. RT combines a degree of fault

tolerance with some of the shell-game effect of RD. If the

attacker compromises a bare majority of computers in as many

clusters as possible (which is his best strategy for either RD or

MR), then RT would outperform MR in the attacked clusters.

MR consistently fails in these clusters while RT still has a

possibility of surviving and providing the correct decision.

RD, however, will do better than RT since RD provides a

better probability (i.e., 49) of choosing correctly; yet, in the

remaining unattacked clusters (i.e., clusters in which there are

no attempted compromises) RT will outperform RD, but still

be outperformed by MR, as shown in Figure 2 for the more

likely values of p > 0.6. We compare the effectiveness of the

algorithms with these inequalities:

Attacked clusters: RD > RT > MR

Unattacked clusters: MR > RT > RD

It is important to note that the defender cannot anticipate,

a priori, which of the clusters will be attacked and which

will not. Therefore, the defender cannot choose RD for the

attacked clusters and MR for those that are not attacked;

instead by choosing RT for all the clusters, the defender

blends the security of a moving target with MRs power-to-

overwhelm faulty computers. A brief analysis substantiates

this claim. In each of the attacked clusters, RD produces

a correct output with probability 49 = 0.444; whereas RTs

probability of producing a correct decision (assuming p = 1)

for a 9 computer cluster is: the probability of selecting 3

uncompromised computers; or selecting 2 uncompromised

computers and 1 compromised computer. This equates to:
(
4
3

)

(
9
3

) +

(
4
2

)(
5
1

)

(
9
3

) = 0.404

Now, let us consider p as the individual computers reliability

(i.e., the computers ability to withstand a NOF) and examine

the combined security and reliability of a simplified 2 cluster

system. Using RD for both clusters, the attacked cluster

produces a correct decision with probability 0.444 and the

unattacked cluster produces a correct decision with probability

p. The joint probability that both clusters produce the correct

decision is 0.444p. Similarly, for RT, the joint probability

of a correct decision being produced by the two clusters is

0.404(p3 + 3p2(1 − p)). From these expressions we find, by

setting the difference of the two joint probability expressions

equal to 0 and finding the roots of the resultant equation, that

for values of p, 0.636 < p < 0.863, the RT-based system is

superior to the RD-based system.

272

4

This simple two-cluster example demonstrates the ability

of RT to effectively combine security and fault tolerance over

a significant range of p values. In scenarios involving more

clusters and where the individual clusters are composed of

more computers, RT can be a prudent compromise between

the game theoretic measures to counter an attackers optimum

strategy and the engineering principles used to create digital

systems that continue operating correctly even in the presence

of naturally induced faults.

IV. CONCLUSION

Some voting algorithms fare better in high assurance sit-

uations than others. Majority rule has high fault tolerance

but relatively low security while random dictator exhibits the

opposite. We found that the random troika strikes a medium: it

combines the fault tolerance attributes of majority rule with a

degree of random dictators security. Considering its versatility,

random troika should be among the top choices of voting

algorithms for high-assurance computing applications.

In the context of voting systems, conjoining reliability (vis-

à-vis fault tolerance) and security can be done reliably and

securely but only with an understanding of when and how the

different voting systems should be applied.

REFERENCES

[1] B. Hardekopf and K. Kwiat. Distributed voting for security and fault tol-
erance. Technical Report AFRL-IF-RS-TR-2001-53, Air Force Research
Laboratory, may 2001.

[2] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 1994.
[3] K. Kwiat. Can reliability and security be joined reliably and securely?

pages 72 –73, 2001.
[4] A. Taylor and W. Zwicker. Simple Games: Desirability Relations,

Trading, Pseudoweighting. Princeton University Press, New Jersey, 1999.

273

5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

